掺 Er³⁺ 离子玻璃作为室温 激光工作物质的分析

郑海兴 干福熹

(中国科学院上海光学精密机械研究所)

提 要

本文计算了玻璃中 Er³⁺ 离子的受激发射截面、量子效率,分析了其泵浦特性,估计了掺 Er³⁺ 离子玻 璃得到激光振荡的能力,确定出合适的基质玻璃系统。

一、引 言

近来人们重新开始探索掺其它离子 (过渡族离子和稀土族离子)的 激光 玻璃印,其中

Er⁸⁺ 离子较引人注目。 有相当多的文献报道了晶体和玻璃 中 Er³⁺ 离子的光谱性质⁽³⁾。 在晶体中已获得了9个通道上 的激光跃迁, 跃迁和相应波长见图1。Er⁸⁺ 离子的几个红外 波长的激光在实用上很有意义。 但由于基质晶体生长较 困 难, 目前都未进入实用阶段, 在玻璃基质中 Er⁸⁺ 离子只是在 低温下在1.6μm 波长上产生了激光⁽³⁾。 本文目的是通过对 玻璃中 Er³⁺ 离子各种特性的分析, 调查玻璃中 Er³⁺ 离子受 激发射的能力。

> 二、Er³⁺ 离子的受激发射截面、发 光量子效率和基质玻璃的选择

1. Er⁸⁺ 离子的受激发射截面

决定掺杂离子受激发射能力的标志是受激发射截面。对 稀土离子可根据 Judd-Ofelt 理论计算辐射跃迁几率 *A*_r,并 按下式求得相应跃迁的受激发射截面 σ_s:

$$\sigma_{p} = \frac{1}{8\pi c n^{2}} \cdot \frac{\lambda^{4}}{\Delta \lambda} A_{ro}$$

Δλ 是相应跃迁荧光谱线的有效线宽,这里近似取为荧光谱线 wavelengths of In 10hs 的半宽度。利用我们计算得到的辐射跃迁几率^{[22}计算了氟化物、氟磷和磷酸盐玻璃中 Er³+

(1)

收稿日期: 1985年2月17日; 收到修改稿日期: 1985年4月8日

5卷

离子各个发光跃迁的峰位受激发射截面,结果见表1。计算中 *I11/2 →*I18/2 跃迁的 AX 因未 测定其荧光光谱,这里取与 ⁴Ⅰ11/2→⁴Ⅰ15/2 一样的 Δλ 数值, 而磷酸盐、氟磷玻璃中所有跃迁 的 AX 值取与氟化物玻璃一样的数值。从表中可看到 *I11/2->*I13/2 跃迁的受激发射截面值 约为2×10-20 cm2, 而掺钕玻璃中 Nd3+ 离子的 4F_{8/2}→4I11/2 跃迁(1.06 μm) 的受激发射截 面差不多, 所以得到 2.7 μm 的激光是很有希望的。 Er³⁺ 离子其它跃迁的受激发射截面就 较小,数值次之的是 ${}^{4}S_{3/2} \rightarrow {}^{4}I_{11/2} (1.21 \,\mu\text{m})$ 跃迁, $\sigma_{9} = 0.59 \times 10^{-20} \,\text{cm}^{2}$, ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ $(1.55 \mu m)$ 跃迁, $\sigma_0 = 0.36 \times 10^{-20} cm^2$ 。

玻 璃 种 类	跃 J_{-}	迁 →J′	平均波长 (µm)	辐射跃迁几率(s ⁻¹) (电偶极+磁偶极)	荧光分支比 β(%)	谱线半宽度 (Å)	峰位受激发射截 面 σ_p (10 ⁻²⁰ cm ²)
	4I 13/2	4I _{15/2}	1.536	111.29	100	1000	0.3592
氟锆	4] _{11/2}	4I _{13/2} 4I _{15/2}	2.695 0.978	22,22 98,31	18.4 81.6	300 300	2.2655 0.173 8
玻 璃 n =1.5124	4S _{3/2}	4I _{9/2} 4I _{11/2} 4I _{13/2} 4I _{15/2}	1.627 1.211 0.836 0.541	41.31 117.57 80.17 959.85	3.4 9.8 6.7 80.1	500 250 150 150	0.33 57 0.5865 0.1514 0.3178
	4I 13/2	4I _{15/2}	1.566	87.14	100	1000	0,3171
承磷	4I _{11/2}	⁴ I _{13/2} ⁴ I _{15/2}	2.510 0.964	23.49 82.75	22.11 77.89	300 300	1.8807 0.1441
玻 璃 n=1.4804	⁴ S _{3/2}	$4I_{9/2}$ $4I_{11/2}$ $4I_{13/2}$ $4I_{15/2}$	1.669 1.234 0.827 0.547	29.92 85.30 63.52 736.22	3.27 9.32 6.94 80.46	500 250 150 150	0,2810 0,4788 0,1199 0,2544
磷	4I _{13/2}	41 _{15/2}	1.552	109.62	100	1000	0.3427
酸盐	4I _{11/2}	⁴ I _{13/2} 4 _{I15/2}	2.648 0.987	24.44 105.22	18.85 81.15	300 300	2.1585 0.1794
玻	4S _{3/2}	4I _{9/2} 4I _{11/2}	1.680 1.220	34.53 108.41	3.14 9.87	500 250	0.2695 0.5177

表1 玻璃中 Er³⁺ 离子的发光的荧光分支比和受激发射截面 Table 1 Luminescence branching ratios and induced emission cross-sections of Er³⁺ ions in glasses

2. 发光量子效率和基质玻璃系统的选择

0.841

0.546

4I 13/2

4I15/2

璃

n=1.5688

以上分析可知, ${}^{*}I_{11/2} \rightarrow {}^{*}I_{13/2}$, ${}^{*}S_{3/2} \rightarrow {}^{*}I_{11/2}$ 和 ${}^{*}I_{18/2} \rightarrow {}^{*}I_{15/2}$ 跃迁是有希望得到激光振 荡的,但产生激光振荡的另一个重要条件是在基质玻璃中 Er3+ 离子的 4S3/2、4I11/2 和 4I13/2 能级的发光量子效率。量子效率可按下式计算:

74.32

881.26

$$\eta = \sum A_r / (\sum A_r + W)_{\circ} \tag{2}$$

150

150

0.1336

0.2814

6.77

80.22

Er³⁺ 离子的辐射跃迁几率 A, 随基质的变化是不大的^{[37}, 我们在计算中是应用氟锆玻璃中 Er⁸⁺离子的辐射跃迁几率(见表1)。

Layne 等人总结出玻璃中无辐射跃迁几率 W 与稀土离子的能级间隔 4E 成指数关系^[4]:

 $W = W_0 \exp(-\alpha \Delta E),$

并据实验数据作出了硼酸盐、磷酸盐、硅酸盐、锗酸盐和碲酸盐玻璃系统中稀土离子激发态

能级的无辐射跃迁几率 W 与能级间隔 4B 的关系图 (见图 2)。图中氟锆玻璃线是用 Reisfeld 等人得到 的 Er³⁺ 离子 的无辐射 .跃迁几率数据作出的^[5]。

从图 2 可以估计 Er^{3+} 离子的激发态 能级在各种玻璃中的无辐射跃迁几率,这 样可按(2)式计算量子效率。计算结果见 表 2。从表中可看到:(1)如要获得 ${}^{4}S_{3/2} \rightarrow$ ${}^{*}I_{11/2}$ 的激光振荡,只可能在氟锆玻璃中, 其它玻璃因量子效率太低而不适用;(2)如 要获得 ${}^{4}I_{11/2} \rightarrow {}^{4}I_{13/2}$ 跃迁的激光也只可能 在氟锆玻璃中, ${}^{4}I_{12/2}$ 能级的发光量子效率 高达 78%;(3)对 ${}^{4}I_{18/2} \rightarrow {}^{4}I_{15/2}$ 跃迁,因能 级间隔 ΔB 很大(约 6500 cm⁻¹),即使在硼 酸盐玻璃中量子效率也在 60% 以上,所以 从量子浓率来看这几种玻璃系统都适合作 为基质。

Fig. 2 Nonradiative decay rate vs. energy gap for rare earth ions in various glasses

三、泵浦特性和粒子数积累

从稀土离子在玻璃中的吸收光谱可知 Er³⁺ 离子的吸收仅次于 Nd³⁺ 离子⁽⁷⁾。 Er³⁺ 离 子在玻璃中的吸收光谱随基质玻璃变化不大^[3],在氟锆玻璃中的吸收光谱见图 3。 Er³⁺ 离 子从紫外到 0.60 μm 区域有较密集的吸收带,此外在 0.66、1.0 和 1.55 μm 处有三个吸收 带。 与 Nd³⁺ 离子不同的是 Er³⁺ 离子的主要吸收区在 λ<0.55 μm 区域,主要吸收带为

Table 2 Quantum efficiences of luminescence of Er^{3+} ions in glasses							
	辐射跃迁 几率(sec ⁻¹)	无辐射跃迁 几率(sec ^{~1})	荧 光 寿 命		量子效率		
项			估计值	测量值	估计值	测量值	
B ₂ O ₃ -Na ₂ O-BaO		$5.0 imes 10^{7}$	0.02		0		
P_2O_5 -Na $_2O$ -BaO		$6.0 imes 10^{6}$	0.17		0.02		
SiO_2-Na_2O-BaO	1200	$1.0\! imes\!10^{6}$	1.00		0.13		
GeO_2 -Na $_2O$ -BaO		$1.1 imes 10^{5}$	8,99	8.9[10]	1.08	1.0¶	
$TeO_2-Al_2O_3-WO_3$		$7.0 imes 10^{4}$	14.04	34.7[10]	1.68	4.16	
ZrF ₄ -BaF ₂ -LaF ₃ -AlF ₃		$1.0 imes 10^{3}$	454.5	440.0 ^[9]	54.54	52.8	
4 <i>I</i> _{11/2} 能级(4 <i>I</i> _{11/2} —4 <i>I</i> _{13/2} 能级间的间隔为 3500 cm ⁻¹)							
B ₂ O ₃ -Na ₂ O-BaO	$6.0 imes 10^{6}$	0,167		0			
P_2O_5 -Na ₂ O-BaO		$6.0 imes 10^{5}$	1.67		0.02		
SiO_2 -Na $_2O$ -BaO	120	$9.0 imes 10^{4}$	11.10		0.15		
GeO_2 -Na ₂ O-BaO		1.1×10^{4}	89.93		1.08		
$TeO_2-Al_2O_3-WO_3$		$7.0 imes 10^{3}$	140.45		1.68		
ZrF ₄ -BaF ₂ -LaF ₃ -AlF ₃		3.5×10^{2}	2127.65	6500[9]	25.53	78.0	
⁴ I _{13/2} 能级(⁴ I _{13/2} — ⁴ I _{15/2} 能级间的间隔为 6000 cm ^{−1})							
B ₂ O ₃ -Na ₂ O-BaO		60	5.88 ms		64.70		
P_2O_5 -Na $_2O$ -BaO		5	$8.70 \mathrm{ms}$		95.70		
SiO_2 -Na ₂ O-BaO	110	0	9.10 ms		100		
GeO_2 -Na ₂ O-BaO		0	9.10 ms		100		
$\mathrm{TeO_{2}\text{-}Al_{2}O_{3}\text{-}WO_{3}}$		0	9.10 ms		100		
ZrF4-BaF2-LaF3-AlF3		0	9.10 ms	9.2 ms ^[9]	100	100	

表 2 各种玻璃中 Er³⁺ 离子发光能级的量子效率

估计值是据辐射跃迁几率和无辐射跃迁几率计算估计的。

0.38 和 0.52 μm, 下面具体分析 ⁴S_{3/2}、⁴I_{11/2} 和 ⁴I_{13/2} 能级的粒子数积累特性。

1. ${}^{4}S_{3/2}$ 能级 图 4 是氟锆玻璃和磷酸盐玻璃中 Er³⁺ 离子 ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}(\lambda=0.54 \mu m)$ 发光的激发光谱。图中表明 ${}^{4}S_{3/2}$ 能级以上的各激发态能级的吸收对该发光都有贡献,不过 波长 $\lambda > 0.54 \mu m$ 的泵**浦光**不能利用。对 ${}^{4}S_{3/2}$ 能级的发光,各能级的贡献在不同玻璃基质 中稍有不同,在氟玻璃中 0.38 μm 带的贡献比 0.52 μm 带大,在磷酸盐玻璃中则反之。

从能级结构来看, *S_{8/2} 以上能级间隔较小,无辐射跃迁几率很大,几乎没有发光。这表明 *S_{8/2} 能级类似于 Nd³⁺ 离子的 *F_{3/2} 能级,粒子数能迅速在 *S_{3/2} 能级积聚。但 *S_{3/2} 与 ³H_{11/2} 能级有热平衡关系,而 ²H_{11/2} 能级的交叉驰豫几率很大⁽²⁾,所以为使粒子在 *S_{8/2} 能级上积累, Er³⁺ 离子的掺杂浓度很小。

2. ${}^{4}I_{11/2}$ 能级 图 5 是氟化物玻璃中 $\mathbf{Er}^{\mathbf{s}+}$ 离子的 ${}^{4}I_{15/2}(\lambda=0.975\,\mu\mathrm{m})$ 发光的 激发光谱^[8]。从图中可知 0.45 $\mu\mathrm{m}\sim0.55\,\mu\mathrm{m}({}^{4}F_{7/2}, {}^{2}H_{11/2}\,\pi\,{}^{4}S_{3/2})$ 和 0.66 $\mu\mathrm{m}({}^{4}F_{9/2})$ 的 吸收对 ${}^{4}I_{11/2}$ 能级的发光有较大的贡献。特殊的是两个主要吸收带, ${}^{2}H_{11/2}$ 带的贡献很大, 而 ${}^{4}G_{11/2}$ 吸收带的贡献较小。

 ${}^{4}I_{11/2}$ 以上的激发态能级 ${}^{2}H_{11/2} + {}^{4}S_{3/2}$ 、 ${}^{4}F_{9/2}$ 与次下能级的间隔 ΔE 较大(3000, 2500)

图 4 氟锆玻璃和磷酸盐玻璃中 Er³⁺ 离子激发光谱 Fig. 4 Excitation spectra of Er³⁺ ions in fluorozirconate glass and phosphate glass (A_{emi}=540 nm)

Fig 5 Excitation spectra of Er^{3+} ions in fluoride glasses ($\lambda_{emi} = 975 \text{ nm}$)

em⁻¹),从而激发到上激发态能级的粒子数大多会以发光形式驰豫到基态,而不在 ⁴I_{11/3} 能级上积累,但有幸的是 Er³⁺ 离子的许多上激发态能级能发生交叉驰豫,从而可能把 粒子

相对发光强度 I Hist *S'a 2 0.4 0.8 1.2 1.6 n 2.0 2.4 Er3+离子浓度(10²¹em') 氟锆玻璃中 Er³⁺ 离子浓度对 图 6 发光强度的影响 Fig. 6 Effect of Er^{3+} ion concentration in fluorozirconate glasses on luminescence intensities

数聚集到 ${}^{I}I_{11/2}$ 能级。 我们对这个问题的研究 结果是:在氟化物玻璃中 Er^{3+} 离子的交叉驰豫在 很低浓度下就能发生, ${}^{I}I_{11/2}$ 能级的发光随 Er^{3+} 离子 浓度的增加而增强(见图 6)^[0]。并据发光的温度效应 证明了交叉驰豫的途径之一是 ${}^{3}H_{11/2} \rightarrow {}^{4}I_{0/2}, {}^{4}I_{15/2} \rightarrow$ ${}^{4}I_{11/2}$ 。 高浓度 Er^{3+} 离子掺杂下不但可以使 ${}^{4}S_{3/2}$ 以 上能级的粒子通 过交叉驰豫转移到 ${}^{4}I_{11/2}$ 能级上, 而且对氙灯的吸收大大增加(Beer's 定律),从而更有 利于 ${}^{4}I_{11/2}$ 能级上粒子数的积累。

3. ${}^{4}I_{13/2}$ 能级 ${}^{4}I_{13/2}$ 能级的泵浦特性类似于 ${}^{4}I_{11/2}$ 能级。由于 ${}^{4}I_{13/2}$ 以上激发态能级的发光和 0.6~1.5 μ m 区域的吸收较弱,导致对 ${}^{4}I_{13/2}$ 能级的泵 浦效率不佳。虽然由于交叉也驰豫使 ${}^{4}I_{13/2}$ 能级的发 光随 ${}^{2}r^{3+}$ 离子浓度增加而增强(见图 6),但高浓度 ${}^{2}r^{3+}$ 掺杂对 ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ 的三能级机构的激光振荡 是不合适的。从表2可知在各种玻璃中 ${}^{4}I_{13/2}$ 能级的 发光量子效率都很高,这样可以选用多声子无辐射驰

豫几率较大的基质玻璃以减少 ⁴I_{13/2} 以上能级的发光,使激发到各激发态上的离子通过 无辐射级联形式驰豫到 ⁴I_{13/2} 能级上。

四、敏化和去敏活

如上所述, ${}^{4}I_{11/2}$ 、 ${}^{4}I_{13/2}$ 能级的泵浦效率较低, 对 ${}^{4}I_{11/2} \to {}^{4}I_{13/2}$ 可采用高浓度掺杂来解

Fig. 7 Ion sensitizations (a) $Nd^{3+}-Yb^{3+}-Er^{3+}$; (b) $Cr^{3+}-Yb^{3+}-Er^{3+}$

决, 对 ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ 可采用敏化。 目前利用敏化已在磷酸盐玻璃中得到了室温下工作的 Er³⁺离子 ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ 跃迁的激光, 是采用 Nd³⁺-Yb³⁺-Er³⁺系统^[10], Cr³⁺-Yb³⁺-Er³⁺系统^[11]和 Yb³⁺-Er³⁺系统^[12]。其有 Nd³⁺-Yb³⁺-Er³⁺系统的阈值已降低到 85 J, 这种激光玻璃已商品化^[13,14], Cr³⁺-Yb³⁺-Er³⁺系统的激光效率在用氙灯泵浦时达到 1.3%。这些敏化的途径见图 7。从图中可看到 Cr³⁺+Yb³⁺ 或 Nd³⁺+Yb³⁺ 也可用来敏化 ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$, 在玻璃中这方面的工作待研究。

⁴ $I_{11/2}$ →⁴ $I_{13/2}$ 跃迁是自终结的,即⁴ $I_{13/2}$ 的寿命比⁴ $I_{11/2}$ 长。为改善激光跃迁的性能, 可采用其它离子来转移⁴ $I_{13/2}$ 能量。在 YAG: Er^{3+} 工作物质中用 Ho^{3+} 和 Tm^{3+} 对⁴ $I_{13/2}$ 去 激活,效果良好^[15]。从稀土离子能级图可看到,除了这两种离子外, Tb^{3+} 、 Pr^{3+} 和 Nd^{3+} 应 有去激活作用。特别是 Nd^{3+} 离子值得深究,因为它对 ⁴ $I_{11/2}$ →⁴ $I_{13/2}$ 可起敏化和去激活双重 作用(见图 7)^[10]。

五、总 结

通过以上 Er³⁺ 离子的分析可以得出:只要基质玻璃选择适当和采用能量转移的方法,可以在掺 Er³⁺ 离子的玻璃中得到几种波长的激光振荡。最有希望的是在掺高浓度 Er³⁺ 离子氟化物玻璃中得到室温下工作的 2.8 μm 激光,表 3 列举的数据也表明这一点。

表 3 玻璃中 Nd³⁺ 离子的 ⁴F_{3/2}→⁴I_{11/2} 跃迁和 Er³⁺ 离子的 ⁴I_{11/2}→⁴I_{18/2} 跃迁的光谱性质比较 Table 3 Comparison of spectroscopic properties between the ⁴F_{3/2}→⁴I_{11/2} transition of Nd³⁺ ions and the ⁴I_{11/2}—⁴I_{13/2} transition of Er³⁺ ions in glasses

N ₁₀₁₂ SiO ₂ -C:	aO-Na2O 玻璃 +	-Nd ³⁺	ZrF4-BaF2-LaF3-AlF3-LiF 玻璃 +Er3+			
⁴ F _{3/2} -	$\rightarrow {}^{4}I_{11/2}(1.06\mu\mathrm{m})$		$4I_{11/2} \rightarrow 4I_{13/2}(2.7\mu m)$			
荧光分支比 (%)	$egin{array}{c} eta_{0.88} \ eta_{1.06} \ eta_{1.35} \end{array}$	35 54 12	荧光分支比 (%)	$egin{array}{ccc} eta_{0.98} & 81.6 \ eta_{2.7} & 18.4 \end{array}$		
辐射跃迁几率	$egin{array}{c} A_{[0.88]} \ A_{[1.06]} \ A_{[1.35]} \end{array}$	470sec ⁻¹ 725sec ⁻¹ 161sec ⁻¹	辐射跃迁几率	$\mathcal{A}_{[0.98]}$ 98.31 sec ⁻¹ $\mathcal{A}_{[2.7]}$ 22.22 sec ⁻¹		
ΣA	133 5 s	ec-1	Σ^A	$120.5 {\rm sec^{-1}}$		
荧光寿命(µs)	510) μs	荧光寿命(µs)	6500 μs ^[5]		
无辐射跃迁几率	z 606	sec ⁻¹	无辐射跃迁几率	33 .3 sec ⁻¹		
量子效率(%)	69		量子效率(%)	78		
	240 37 0)	$egin{array}{llllllllllllllllllllllllllllllllllll$	600(全谱线宽)		
$\sigma_{\pi}^{p}[0.88] (10^{-20} \mathrm{cm}^{2}) \qquad 0.29 \ \sigma_{p}^{F}[1.06] (10^{-20} \mathrm{cm}^{2}) \qquad 1.45$			$\sigma_p^a[0.98] (10^{-2} {}^0_{ m cr}] \sigma_p^F[2.7] (10^{-20} { m cm})$	n ²) 1.63 n ²) 2.26		

参考文献

[1] 干福熹; 《中国激光》, 1984, 11, No. 7 (Jul), 458.

[3] H. W. Gandy, R. J. Ginther, et al.; Phys. Lett., 1965, 16, No. 3 (Jun), 266.

光

- [4] C. B. Layne, W. H. Lowdermilk; Phys. Rev. B, 1977, 16, No. 1 (Jul), 10.
- [5] M. D. Shinn, et al.; Phys. Rev. B., 1983, 27, No. 11 (Jun), 6635.
- [6] R. Reisfeld, Y. Echstein; J. Non-cryst. Solids, 1974, 15, No. 1 (Apr), 125
- [7] Kan Fuhsi, Jeung Chunghung et al.; Scientia Sinica, 1965, 14, No. 8 (Aug), 1159.
- [8] R. Reisfeld, G. Katz; J. Solid State Chem., 1983, 48, No. 3 (Jul), 323.
- [9] Gan Fuxi, Zheng Haixing; Chinese Physics Letters, to be published.
- [10] E. Snityer, R. F. Woodcock; IEEE J. Q. E., 1968, QE-4, No. 5 (May), 360.
- [11] Yu. D. Berezin; Zh. Prikl. Spektrosh., 1984, 40, No. 2 (Feb), 189.
- [12] A. D. Pearson, S. P. S. Porto; Appl. Phys. Lett., 1964, 4, No. 12 (Jun), 202.
- [13] R. F. Woodcock; «Handbook of Laser», edited by R. J. Pressley, (Chemical Rubber Company, U. S. A., 1971), 130.
- [14] Yukio, Morisbige et al.; Optics Lett., 1984, 9, No. 5 (May), 147.
- [15] A. A. Kaminskii, A. G. Petrosyan; Sov. Phys. Dokl., 1979, 24, No. 6 (Jun), 425.

Investigation of glasses doped with Er³⁺ ions used as laser materials

ZHENG HAIXING AND GAN FUXI

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

(Received 17 February 1985; revised 8 April 1985)

Abstract

Stimulated peak cross sections and quantum efficiencies of Er^{3+} ions in glasses were calculated and pumping characteristics of Er^{3+} ions are discussed. The potential of obtaining laser action in Er^{3+} -glasses at room temperature is estimated with the suitable host glass for laser transition identified.